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Psychiatric patients, such as those suffering from depression or schizophrenia, often need to be monitored with
frequent clinical interviews by trained professionals to avoid costly emergency care and preventable events.
However, there simply are not enough clinicians to monitor these patients on a regular basis. Furthermore,
infrequent clinical evaluations may result in clinicians missing subtle changes in patient state that occur over time.
These limitations can affect both the quality, timeliness, and monetary expense of treatment. Therefore, we
leveraged smart devices to implement traditional neuropsychological assessments such that they could be
collected frequently, remotely, and - when viable - self-administered by the participants themselves. This
approach enables the generation of an enormous quantity of data across time and different assessments. Machine
learning-based methods hold the potential to automatically analyze streams of behavioral and cognitive data,
such as speech and movement, and convert them to actionable events. We examined the viability of the auto-
mation of a comprehensive assessment pipeline, from administration of neuropsychological tests, to transcription
of spoken responses, to an analysis of data to predict clinical states. In the present research, we examined this
pipeline in 353 participants (of whom 134 were patients with a range of diagnoses of psychosis spectrum dis-
orders, substance abuse disorders, and affective disorders, and 219 were non-patient volunteers who were pre-
sumed to be healthy). We found that machine learning-based methods can be applied to this data in order to
reliably and accurately assess the neuropsychological function of individuals. Among other applications, we were
able to automatically score completion of a verbal recall task and predict emotional state via spoken language,
thereby opening the potential for regular, frequent analyses of cognitive and mental states.
1. Introduction

Mental illness is a public health crisis that causes a significant burden
on not only patients, but also their family members, communities, and
healthcare systems alike. The assessment of clinical states in mental
illness is critical, but it is a complex and expensive process that could
become more efficient and accurate by leveraging modern technology
and analytics. According to the National Institute of Mental Health, one
in five adults in the United States lives with some form of mental illness
[1]. With such high prevalence, further confounded by the requirement
to physically visit a doctor's office for assessments, there exist accessi-
bility issues which contribute to an unequal access to services. Further-
more, human cognitive and mental states are dynamic over time and
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context but most traditional assessment methods primarily afford
cross-sectional snap-shots in time. Therefore, they potentially fail to
capture a sufficiently thorough neuropsychological profile of individuals
who may - by virtue of their specific clinical condition - be changing in a
clinically significant manner. The dynamics in cognition and fluctuations
in state warrant a new framework for assessment as such changes
necessitate frequent and longitudinal monitoring.

This study researched and developed a prototype mobile automated
telemental health monitoring tool for deriving frequent measurements of
psychiatric patients’ current neuropsychological function and then pre-
dicted patient cognitive and mental states with machine learning models.
The study further compared these predictions to expert rated labels to
establish how well automated analyses align with traditional clinical
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judgment in order to determine the feasibility of generating actionable
alerts. Recent innovations, including the wide availability of mobile de-
vices to collect continuous streams of data, combined with the
advancement of machine learning methods for analyzing these data
streams, promises to reshape the current manual assessment pipeline.

In this research, an iOS platform (Apple's mobile operating system)
application was built to consistently and reliably collect data from a set
neuropsychological tasks for the purposes of assessing the cognitive and
mental state of its users. Three hundred and fifty three participants (of
whom 219 were non-patient volunteers who were presumed to be
healthy and 134 were adults from an inpatient unit in Louisiana serving
low socioeconomic individuals with comorbid psychiatric concerns and
substance use disorders1) used this application for multiple sessions and
data was collected and analyzed. For this paper, we focused our analyses
on modeling tasks with speech output. As such, we produced a variety of
models that were able to accurately predict certain features of a partic-
ipant's task performance and mental state. First, we created support
vector regression models for predicting emotion (both expert rated and
self-reported) from acoustic speech features. In order to automatically
transcribe speech, custom neural network automatic speech recognition
systems were created for improved transcription of task-specific speech.
Then, we improved our initial acoustic speech-based models with the
addition of language features. Finally, we created a ridge regression
model that predicted quality of story recall and a logistic regression
ensemble classifier based on the same task that predicted class mem-
bership (patient vs. non-patient) of participants.

2. Application of automated methods for neuropsychological
testing

Within psychiatry, clinicians are largely unaware and skeptical of the
ways in which technology has the potential to make their work more
efficient and accurate [2]. Nevertheless, there are at least three main
areas in which the assessment of clinical states via traditional methods
could be improved. First, given the vast number of patients, there are
simply not enough health professionals to monitor patients as frequently
as necessary. Hence, the use of technology and the automation of
assessment could greatly increase the number of evaluations that could
be conducted, as well as nurture equity by expanding the potential pa-
tient population that is able to participate in such assessments. Second,
patients with mental illness require long-term monitoring on the scale of
years which is logistically challenging for clinicians since patients all
have different clinical baselines against which they need to be compared.
Furthermore, current methods simply cannot accommodate the
requirement of multiple assessments on this scale, and nor do the norms
exist that would be required to interpret more frequently obtained
measurements. An automated machine learning approach would be able
to store frequently changing clinical data on a large time scale and adjust
individual thresholds to account for changing state over time. Third, it is
often the case that patients have met with clinicians just a few days prior
to a relapse or attempt at suicide [3], thus highlighting how quickly
clinical states in mental illness can change. Emerging technologies pro-
vide the technical viability for longitudinal monitoring which can track
and transmit data that is determined to be key for specific patients [4],
including information about affect, activation level, and suicidal idea-
tion. Combined with suitable clinical research, machine learning could
be used to generate actionable alerts to initiate human intervention [5].
1 Although this type of sampling resulted in a design that is not optimal for
clinical comparison purposes, the sampling was sufficient for the primary goal of
this study which was to establish the viability of this type of data collection in
terms of participants using and tolerating the system, that good quality data was
possible to obtain outside of the traditional controlled laboratory, and that it
was possible to apply machine learning to such data to generate predictions of
mental state.
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Data capture can be unobtrusive (e.g., wristband monitors and smart
devices) and thus collect continuous data streams. Body movement and
non-verbal aspects of speech can be modeled so as to form robust in-
dicators of psychomotor activation and affect, while automatic analysis
of content and manner of speech can be leveraged to detect morbid
ideation and changes in symptoms of depression and schizophrenia [6,7].

The pattern and content of communication provides large amounts of
information that can be traced back to an individual's overall cognitive
and mental state. Indeed, the information conveyed in speech is core in
mental health diagnosis, treatment, and in monitoring treatment success.
Additionally, speech is the modality through which a large amount of
neuropsychological assessment is conducted, yet traditional assessment
has yet to leverage speech directly and automatically. Thus, we utilized
the latest in speech technologies so as to automatically analyze audio
properties and recognize speech output (i.e., via an automated speech
recognition system) and then perform statistical semantic and syntactic
analyses of language. We combined these audio and language analyses to
predict clinically important variables and thus develop a prototype
automated analysis system. We captured this data in real-time and
applied analytical methods to generate scores that estimate measures of
cognitive and mental states. Our conceptualization of such a ‘telemental
health’ monitoring tool is illustrated in Fig. 1. First, a user is presented
with a task item via graphics and audio output. Then, depending on the
item presented, a user will either respond with speech or a screen touch.
If they respond with speech, the audio is input to a speech recognition
system where the words, timing, and audio features are extracted. These
features are then input to machine learning models to predict content and
quality of speech scores. However, if they respond with a screen touch,
patterns of touch and positional features are input to machine learning
models to predict content and psychomotor scores. These speech and
touch scores from various task items are then combined to predict a final
state estimate.

Since behavior, cognition, and clinical states are highly personal,
psychometric frameworks must utilize not only traditional population
thresholds but also those of individuals, which is now viable with lon-
gitudinal collection of personal data. Consider the following scenario as
depicted in Fig. 2: imagine that we are capturing some number of signs of
agitation from psychiatric patients' verbal content and manner of
speaking. If we find in studying a large outpatient population that the
best overall threshold for intervention is at 1.5 standard deviations from
the average, this can guide us as a rule of thumb. Note however, that
Patient A might generally be more calm and more consistently calm than
the average found in the population (i.e., individual baseline statistics for
Patient A suggest that a lower threshold is better as the population
threshold would miss most events). That patient's intervention threshold
should thus be lower than the population standard. By contrast, Patient B
is an unusually energetic and emotionally labile person and thus Patient
B would be best served by setting a substantially higher threshold than
the threshold that is best over all the population (i.e., individual baseline
statistics for Patient B suggest that a higher threshold is better as the
population threshold would trigger many false alarms). We illustrate that
today's measurement for Patient B (on one dimension) is well within the
population range yet lower than average for their own distribution, and
as such represents a measurement that may warrant further investiga-
tion. Such a conclusion may not have been possible without frequent data
collection and monitoring. Since psychiatric patients are currently
examined quite infrequently, changes in important mental states may fail
to be detected. However, we note that detecting such clinically signifi-
cant changes is just one of many critical steps in the automation pipeline.
Further research is needed to identify suitable guidelines for creating
thresholds for individuals with which clinicians can be alerted and action
taken.

A machine learning system can implement such a tailored thresh-
olding by learning patterns of typical individual and population perfor-
mances and compare a particular participant's daily performance to both
of these. We note that this is a hypothetical example and that extensive



Fig. 1. Schematic view of the computer-based assessment of spoken and touch responses, illustrating the flow of information to and from a voice-interactive device.

Fig. 2. Hypothetical distributions of behavioral signs of agitation from a general
population (gray) and two individual psychiatric patients (green, blue). A very
uncommon value for an individual patient (blue arrow, Patient B) may be well
within a common range for the population and as such may be misjudged
without personalized thresholding. (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)
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clinical research is needed to produce the quantity and type of data that
can confirm or disconfirm this type of conjecture and enable us to expand
on the associated methodology. We suggest the above longitudinal
‘personalized medicine’ approach such that each patient becomes their
own baseline, and results from other patients with ‘similar’ illnesses are
used as general guides. Thus, our proposed system is to complement the
efforts of busy clinicians and help them focus their attention on the most
pressing situations. This is scientifically and technologically viable
because an enormous amount of useful acoustic, linguistic, cognitive, and
clinical assays can be derived and thus provide promise in the near future
of a ‘mental blood test’.

3. Related work

Previous work on automating the assessment of neuropsychological
conditions has been typically conducted within controlled laboratory
settings and in modest sample sizes [8,9]. Automated assessments of
narrative retelling, for example, have been conducted employing neu-
ropsychological tests very similar to portions of our current study [10,
11]. However, as noted, the data collected in these aforementioned
studies have been within controlled laboratory or clinical settings rather
than our work where the focus has been on moving assessment out of the
controlled laboratory where assessment is by an expert administrator,
and into real world settings where tasks are administered by the partic-
ipant themselves. With that said, recent research has shown that passive
measures retrieved from general smartphone use can successfully predict
3

key aspects of cognitive function such as working memory, memory,
executive function, language, and intelligence [12].

Natural language processing (NLP) methods provide the tools with
which it is possible to model aspects of the semantics and syntax pro-
duced in speech as well as characterize the statistical properties of lan-
guage use. Semantic properties of language can be computed by
analyzing large corpora of text to derive estimates of the semantic
relatedness of words as a function of the contexts in which they co-occur,
typically through the use of probabilistic inference (e.g., Latent Dirichlet
Allocation [13]), singular value decomposition (e.g., Latent Semantic
Analysis [14]), or neural networks (e.g., word2vec [15]). Such estimates
provide baselines that can be used to compare the generated language to
measure aspects of discourse in patients. Bedi et al., for example, found
that a Latent Semantic Analysis measure of semantic coherence,
maximum phrase length, and the use of determiners were able to predict
the subsequent development of psychosis with 100% accuracy on a small
sample of psychiatric patients [8]. Similarly, Corcoran et al., found that a
decrease in semantic coherence, a variance in semantic coherence, and a
reduced usage of possessive pronouns predicted subsequent psychosis
onset with 83% accuracy [9]. Typically these studies are interested in
predicting illness onset over a matter of months or years, but our present
study has a focus on immediate predictions within hours or days.

Indeed, a number of other studies have shown that in small samples of
data, such approaches can predict clinical classes and clinician ratings
[16–19]. However, we want to not just assess speech for the sake of the
language produced, but to jointly use the speech signal as a direct mo-
dality through which to assess neuropsychological function and clinical
state. The present work showcases how such techniques can move
beyond a simple proof of concept and in the near future be translated into
viable clinical tools.

4. dMSE application

A total of 12 unique behavioral assessment item types that were
designed to assess cognition, motor skill, and language were integrated
into an application called the deltaMental Status Exam (‘delta’ to indicate
our interest in ‘change’; dMSE). The items were similar in form and
structure to standardly employed neuropsychological tests [20], but were
designed so that 1) the items could be easily used for frequent (e.g., daily)
and remote self-administration with a smart device, 2) the items pro-
vided short engaging tasks that required the users to listen, watch, speak,
and touch, and 3) the interactions could be automatically analyzed to
extract a rich set of measures from each item. Nine of the 12 tasks were
adaptations of popular neuropsychological tests (for an overview, see
Refs. [20]), notably trail making, Stroop selective attention, immediate
and delayed Logical Memory story recall (of the Wechsler Memory test,
[21]), semantic verbal fluency, finger tapping, and digit, letter, and
visual-spatial span tasks, and three of the tasks required participants to
provide speech in response to image stills or verbal prompts. Fig. 3 shows



Fig. 3. A sample sequence of tasks and brief overview of the delta Mental Status Examination (dMSE).
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an overview of a sequence of tasks presented to a participant during each
test session.

Our version of the Stroop task involved a reduction in the number of
trials so as to be acceptable for ambulatory purposes yet enough trials so
as to be statistically robust, and we also increased the pace of the task to
make it more engaging. Our adaptation of the immediate and delayed
Logical Memory story recall tasks were structurally similar to the original
version, but included many more story versions and allowed for
recording of the speech responses so as to apply automated speech
recognition and score the responses with NLP and machine learning.
These adaptations were based on solicited user feedback which allowed
task redesign. As such, our versions of the tasks likely capture the similar
neurocognitive processes that traditional assessment tools do, but enable
much more fine grained detail to additionally be collected, analyzed, and
acted upon. Although not conducted in our study, future clinical trials
that additionally employ traditional neuropsychology tests and methods
would be good to compare with our novel versions.

The tasks were developed in both English and Norwegian to be
implemented as mobile applications on the iOS platform (for more details
of the application, see Ref. [22]). For the purpose of this paper we focus
on the data collected in the English language. The iOS platform provided
several advantages including the ability to easily download the applica-
tions to smart devices such as iPhones and internet-connected iPods as
well as update the application when needed. This allowed two versions of
the application to be created; the second version incorporated changes
made to better align with user feedback on the first. Additionally, the
application framework permitted fast development of highly useable
interface components including video and image displays, speech
recording, and capture of user interaction with the touch-screen.

The usefulness and feasibility of the application was addressed by
considering user receptivity to it and overall impression, their willingness
to comply with its requirements, including issues such as potential fa-
tigue or boredom as well as tolerating it over extended periods of time,
and whether the tool successfully and efficiently collected useful data.
Overall, our results showed that the system was easily useable by psy-
chiatric patients and non-patients (tested on a subset of our data: 100
psychiatric patients and 125 non-patients). Seventy-two out of 100 psy-
chiatric patients and 88 out of 125 non-patients completed all of a
planned series of 5 consecutive daily sessions. Comments from the sur-
veys were generally favorable with over 99% compliance rates (i.e.,
completing initiated sessions).

We solicited feedback on usability from a sub-group of psychiatric
patients and clinicians (N¼ 24) about the tolerability of the test duration
and efficiency of data collection (for details, see Refs. [22]). Users
tolerated it well with some patients happily using if for 30–40 day-
s/sessions (median¼ 5, range¼ 1–40). Participants were asked to indi-
cate using a slider the magnitude (0–100) to which they believed this tool
would be useful or not to monitor mental health (average¼ 76.5,
SD¼ 15.1), and whether they liked using this tool (average¼ 77.0,
SD¼ 16.3). The main complaint was that there were too many tasks
and/or it took too long. When asked how often they believed such a tool
should be used, the majority suggested several times a week if not daily
and the average suggestion for length of the task was 8.75min. Inter-
estingly, this is only slightly shorter duration than the current version of
this task (approximately 10min). Even if the main complaint was related
to duration, we see this as likely that users will comply with spending a
short duration of time of testing daily in confined time periods.

It is well documented that most mental health apps are used only
briefly by participants before their use is discontinued. One study of
mental health apps showed that in the first ten days of app usage there is
a decline of more than 80% in app open rates and then there is an
additional 20% decline between days 15 and 30 [23]. We are optimistic
that this will not be the case in the use of our system, although a full scale
clinical trial will be necessary to establish this empirically. Our optimism
stems from several sources: first, we followed the key engineering design
principle of clearly establishing a priori what users used their current
5

tools to achieve and designed accordingly [24]. Second, the different
types of users (patients, non-patients, clinicians) were all involved at all
stages of the tool development, from the initial design to the later stages
when feedback was solicited on numerous issues (e.g., the actual inter-
face). Crucially, the improvement from our first to our second version of
the tool reflected these comments. Third, the tasks are all brief and
engaging (as several presentation and response modalities are
employed), and this feel of novelty is further facilitated by the employ-
ment of different versions of tasks and just a subset of the entire task list
appearing in each session.

5. Methods and analyses

We first investigated how well machine learning approaches could
analyze unobtrusive interactions such as speech-based tasks from users
and be converted to measures of cognitive function and mental state.
Although there are a variety of task types in the dMSE application, in this
paper we focus only on a select number of speech-based tasks, namely
tasks 3 and 9 (verbally retelling a story immediately after hearing it and
after a delay), 5 (saying the color of a word shown on the screen: the
Stroop task), and additionally 11 (sliders for self-report of mood and
mental health; used as prediction targets) from Fig. 3, as well as open
ended response prompts. These tasks were chosen to analyze as this
research specifically focused on the analysis of speech. Each task builds
up speech in an incremental way; the Stroop task is simple and con-
strained yet with the use of ASR and speech characteristic packages we
can extract important behavioral characterizations while the verbal
recall task is less constrained and more challenging, both for the user and
technologically. The mood and mental health sliders give key informa-
tion on self-reported mental state that can be used alongside task
performance.

Developing the automatic language scoring system was the critical
part of the analytical research in this project and comprised four key
components, namely the research and development of (i) an automated
analysis of acoustic properties of speech; (ii) an automatic speech
recognition system that was specific to the assessment tasks; (iii) NLP-
based methods to extract and analyze semantic and syntactic features
of the speech; and (iv) machine learning methods for combining features
to predict clinically important variables.

In each application of machine learning methods, specific model
types were chosen as they yielded the highest accuracies, were able to
learn patterns in relatively small datasets, and were interpretable such
that in the future clinicians will be able to ascertain the influence of in-
dividual feature inputs [25]. It is because of these constraints that more
complex modeling techniques such as neural networks were not used as
our final chosen models. We discuss the four components of our research
below, with results of each application included in Table 1.

5.1. Analysis of speech

Voice recordings from structured, yet open-ended questions provide
sufficient data to assess the acoustic properties or speech and charac-
terize changes in mood and emotional valence. We chose to analyze
spontaneous speech in reaction to greeting questions such as how are you
and how did you sleep last night, describing still pictures and silent videos,
retelling a story immediately and after a delay, free speech questions as to
how one would boil an egg, whether television has changed family life for the
better or not, and why some people might prefer electric cars to the more
traditional gasoline ones, and suggestions for improving the app.

5.1.1. Detecting mood fluctuations
Thefirst step in the evaluation of acoustic features formeasuringmood

fluctuations was to determine suitability of the audio recordings for
acoustic analysis. The preliminary analysis showed that nearly all re-
cordings were deemed adequate (minimal background noise and intelli-
gible to humans), suggesting that the hardware and software technologies



Table 1
Results of each application of machine learning in the present study, ordered by the section in which it is detailed.

Assessment Machine Learning
Model

Features Used Assessment Metric Results

Arousal prediction Support vector
regression model with
RBF kernel

Acoustic speech features Correlation to expert rating r¼ 0.70 (non-
patient)
r¼ 0.72 (patient)

Emotional valence prediction Support vector
regression model with
RBF kernel

Acoustic speech features Correlation to expert rating r¼ 0.67 (non-
patient)
r¼ 0.43 (patient)

Positive affect prediction Support vector
regression model with
RBF kernel

Acoustic speech and language features from story recalls Correlation to self-report r¼ 0.38 (non-
patient)
r¼ 0.44 (patient)

Negative affect prediction Support vector
regression model with
RBF kernel

Acoustic speech and language features from story recalls/
Acoustic speech features from Stroop task

Correlation to self-report r¼ 0.40 (non-
patient)
r¼ 0.48 (patient)/
r¼ 0.47 (overall)

Story recall (a measure of
participant memory) rating
model

Ridge regression model (1) # unique words spoken in the recall, (2) # common
words between original story and the recall, and (3) word
mover's distance

Correlation to expert rating r¼ 0.88

Patient vs non-patient
classification model

Ensemble of logistic
regression classifiers

Same features as above computed on (1) the immediate
recall, (2) the delayed recall, (3) the change between the
immediate and delayed recalls

Classification accuracy of whether
response was from a patient or non-
patient

76% (human
transcribed data)
74% (ASR
transcribed data)
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used in the dMSE system provided acceptable performance. Then, we
evaluated an empirically-derived limited acoustic feature set in their
convergence with expert ratings of emotional arousal and valence, with
many correlations in the range of 0.30–0.45 (for details, see Ref. [7]).

Using ambulatory-based acoustic analysis of natural voice recorded
from relatively structured speaking tasks in participants’ home envi-
ronment, we were able to evaluate the consistency of acoustic signals
over time, its relationship to clinically-rated symptoms and state affect,
and symptom-by-state interactions. Our results suggest that acoustic
signals were fairly stable over time within psychiatric patients. We con-
ducted multi-level modelling to evaluate the degree to which de-
mographics (gender, age), clinically-rated psychiatric symptoms
(affective and mania-agitation symptoms), ambulatory self-report state
(negative affect) and self-reported symptoms were related to ambulatory-
based acoustic variables (dependent variables). We found that acoustic
variables alone were not highly related to psychiatric symptoms, as has
been shown in prior research. However, irregularities in acoustics were
associated with state-by-symptom interactions. For example, high levels
of stress were associated with abnormally small changes in vocal
expression for a wide variety of psychiatric symptoms (i.e., affective
symptoms and manic-agitation symptoms). For psychiatric patients with
no active psychiatric symptoms, stress levels had normal effects on voice
modulation. They spoke less when stressed and spoke louder with more
emphasis and intonation. The same modulation was not seen in patients
with psychiatric symptoms. Therefore, the conjecture that vocal re-
cordings are useful for understanding serious mental illness was sup-
ported, but only if voice data is collected alongside emotional state
variables [7].

5.1.2. Predicting arousal and emotional valence
Speech processing and machine learning models built on speech data

obtained from greeting questions, still picture and video descriptions,
immediate and delayed story recall, and suggestions for improving the
app further showed that we could accurately characterize important
emotional states (for details see Refs. [6]). Interestingly, the models
could predict participants’ arousal and emotional valence in a manner that
was comparable to trained human raters (including clinicians).

A stratified sample of the data was employed so as to provide a spread
across a range of response styles (according to the number of words
spoken and self-reported slider values). The resulting non-patient group
comprised N¼ 28 sessions and the patient group comprised N¼ 116
sessions. Two rating rubrics were developed and used to rate the level of
arousal (degree of excitement) and emotional valence (positive and
6

negative) in each response. Arousal and emotional valence are key com-
ponents of emotion and various types of emotions can be modeled within
these characteristics [26]. Nine independent raters used a 1–6 scale to
rate the spoken responses and each response was rated by at least two
raters in order to assess inter-rater agreement. For arousal, the average
correlation for individual responses (across all raters) was 0.62, and for
emotional valence this was 0.59. There was less variance in the emotional
valence ratings as a result of many “neutral” ratings, indicating that it was
more difficult for humans to judge, and indeed subjectively the experi-
ence is that it is easier to detect arousal in speech than emotional valence.
The average rating of each rater per response averaged over all responses
per session was used as the prediction target.

Speech features were modeled to predict human ratings by extracting
speech signal processing features from the responses using a state-of-the-
art open source package (openSMILE [27]; which includes 6373 distinct
audio features such as energy, loudness, MFCC, PLP, F0, probability of
voicing, voice-quality: jitter and shimmer, formant frequencies and
bandwidth (F1, F2, F3, F4, etc.), harmonics-to-noise ratio, and so on as
well as statistics of features (e.g., means, extremes, moments, segments,
peaks, linear and quadratic regression, percentiles, durations, onsets,
etc.)). A support vector regression model (with a radial basis function
(RBF) kernel, degree¼ 3, cost¼ 10, eps¼ 0.2, loss¼ 0.1, and
normalize¼ true) was then built which combined and weighted features
to best predict human ratings. Support vector regression models perform
well with small datasets as they work by finding hyperplanes in a derived
feature space. Since our feature space is not linearly separable, the RBF
kernel is used to project the samples into a higher-dimensional feature
space that can then be separated with a hyperplane. Ten-fold cross--
validation was used to tune model parameters on 9 out of 10 equal splits
of the data. The held out fold was used for testing performance and this
process was repeated for all ten folds to compute final performance
measures. The model predicted arousalwith an average correlation to the
average of the human raters of r¼ 0.70 (non-patient) and r¼ 0.72 (pa-
tient). For emotional valence, the best model only correlated at r¼ 0.67
(non-patient) and r¼ 0.43 (patient) on average to the average human
ratings (see Ref. [6] for details). Results show that arousal can be assessed
via speech more reliably than emotional valence, and with more data and
spread of ratings, machine scoring has the potential to match expert
raters even more closely.

5.1.3. Predicting self-reported affective states
In the next experiments, we predicted self-reported emotion from the

acoustics and language of the seemingly affectless task of verbally
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recalling a short story. Self-reports of positive and negative affect were
solicited after participants were given the story recall task in the dMSE
application where they were asked to recite with as many details as
possible a short story that was read to them verbally (more details of the
verbal recall task in section 5.3). The dMSE application contains 7 posi-
tive affect sliders that ask the user to report on personal levels of hope-
fulness, calmness, appreciation, strength, ability to concentrate,
happiness, and levels of energy. Similarly, 8 negative affect sliders ask
the user to self-report on personal levels of anxiety, frustration, fear,
sadness, stress, anger, pain, and helplessness. The final self-reported
positive and negative affect values per session is the average of the
slider responses from each group.

For this study, a population of 21 psychiatric patients and 79 non-
patients generated 137 and 430 total sessions respectively. Similar to
the above study, we used the openSMILE audio feature extractor to
generate speech features from each story recall response. The language
feature set included token count, type count, type token ratio, content
density, mean coherence, standard deviation of coherence, and counts of
particular parts of speech such as verbs, nouns, pronouns. Type token
ratio is defined as the ratio of word types to word tokens. Content density
is operationalized as the ratio of content words (verbs, nouns, adjectives,
and adverbs) to total words. Coherence is computed by comparing
adjacent windows (of size n¼ 4 words) in the text for semantic similarity
using the cosine distance between word vector embeddings of the words
in each window. The average and standard deviation of similarities of all
adjacent windows in a recall were computed.

In each experiment variation, a support vector regression model with
the same parameters and cross validation technique as reported in sec-
tion 5.1.2 was employed. First we showed that by analyzing just one
modality of data, there were moderate correlations with self-reported
affect (0.33< r< 0.40 for speech and 0.07< r< 0.28 for language).
Second we improved on these unimodal analyses by combining the
acoustic and language features from story recalls to predict a person's
self-reported affect. This combination of modalities resulted in an
improved model with correlations of 0.38 < r< 0.48 to self-reports [28].

Interestingly, predictions based on variables derived from speech
collected from the seemingly innocuous Stroop attentional control task
were also remarkably direct assays of self-reported negative affective
states (predictions correlating r¼ 0.47 with reports) as compared to
predictions based on variables from speech collected during verbal self-
reports on subjective state (i.e., “How do you feel today?”; r¼ 0.46). In
this task, words including color words are presented in various ink colors
and the participant is tasked to either read the actual word and ignore the
ink color or to name the ink color and ignore the actual word; see Fig. 3,
item 5 for illustration of the task in which the participant is asked to name
the text color the word RED is written in).

In sum, we were able to measure the audible emotion in the spon-
taneous speech collected using dMSE as determined by (i) consistency of
speech signals over time, (ii) clinical expert ratings of arousal and
emotional valence, and (iii) self-reported positive and negative affect
measurements. Thus, overall we have found that acoustic measures can
model arousal in speech - especially with negative affect - and that
improvement can be gained when adding language features to speech-
based models.

5.2. Automatic speech recognition

In order to process lexical and semantic information in the speech of
participants, it is necessary to be able to convert the speech sounds to
transcribed language efficiently and accurately. Once converted to text,
NLP-based approaches can be applied. In the present study, a spoken
response to a task was captured by a microphone, converted to a digital
signal, and then transcribed by an automatic speech recognition (ASR)
system. The ASR produces a sequence of words along with ancillary in-
formation including the exact timing of the phrases, words and pho-
nemes, and the location of pauses and disfluencies. From this time-
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aligned recognition, the dMSE system can gather both the content of
the spoken response and several aspects of quality, including the speech
rate, intonation and phrasing, and gross and fine spectral characteristics
of the speech. Both the linguistic content and non-lexical quality of
speech are potentially useful in estimating the mental state of
individuals.

An early step was to evaluate the performance of the Google speech
recognition services on the speech that the dMSE system was capturing
from the participants. Importantly, there was no risk of Personally
Identifiable Information being sent to Google's API as all recordings were
transcribed by humans and carefully screened prior to the automated
transcription. Google's cloud speech API (https://cloud.google.co
m/speech-to-text/) can be used off-the-shelf without any particular
modification. We generated Google ASR transcriptions of 193 spoken
responses, comprising a total of 10,286 words. The Word Error Rate
(WER) for this sample of speech was 35.5%. While this may lead one to
assume that Google's languagemodel was not sufficiently accurate for the
analysis of the content or style of the responses, prior work has shown
that lower WERs can still result in accurate NLP-based prediction models
[29,30].

For most of the speech response tasks in dMSE the project, there was
not enough speech data collected to train a task-specific language model.
However, for our version of the Stroop attentional control task, an ac-
curate language model could be deployed, which allowed a comparison
of a task-specific ASR system (using a custom Stroop-specific language
model; details provided in Refs. [31]) with Google's cloud speech ASR.
The custom ASR system used the Kaldi speech recognition toolkit [32] to
train a Deep Neural Network - Hidden Markov Model (DNN-HMM)
acoustic model. The ASR comparison was performed using a set of 175
responses from non-patients in our study for which the project had
human transcriptions. We measured recognition accuracy as WER. The
WER was 6.26% for the custom ASR model and 17.9% for the Google
cloud speech API version.

Although Google's cloud speech recognition API can be used off-the-
shelf without any additional modifications, the WER is rather high on the
Stroop task (while it has a lower WER than that of general speech, given
the small number of words spoken and the importance of exact word
matching in this task, the WER is much more significant here). Since we
assume that Google's acoustic model is very well trained for many kinds
of speech, the apparent reason for the accuracy deficit is Google's lan-
guagemodel, which is designed for recognizing general English discourse
on any topic and this language context does not play any important role
in our version of the Stroop task. We have further examined this potential
on the story recall task and also compared NLP analyses conducted on
transcriptions created by humans versus those generated automatically
with ASR (more details in next section and Ref. [29]). The findings were
positive and we conclude that ASR is now at a point where it can be used
to transcribe language for a range of behavioral and cognitive tasks and
that the noise is sufficiently low that the added value makes ambulatory
monitoring viable.

5.3. Semantic and structural features of story recall

The semantic content and syntactical structure of language have been
shown to be effective indicators of severity of cortical disorders. For
example, in assessing psychiatric patients’ recall of previously heard
stories, the story recall task (called the Logical Memory subtest) of the
globally used Wechsler Memory Scale [21] puts emphasis on human
raters counting the number of “story units” to measure the accuracy of
recall. This assessment of human memory is one of the most important
ways in which neurocognitive function is established. However, such
methods rely on the human raters to find close to exact matches of words
in the recalls, which can be time consuming and may miss subtle changes
in wording or in recall organization. Automatically extracting features
from transcribed speech holds the promise of overcoming this bottleneck
(see Ref. [29] for further details).

https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/


Fig. 4. Distribution plots of the one-dimensional PCA reduced classification
model data with random jitter to make the point distribution visible. Colors
reflect the class that each point belongs to (orange for the patient class on the
right hand side and blue for the non-patient class on the left hand side). The
sessions of two participants were chosen to illustrate not only how they compare
to the greater distributions but also how varied individual performance on
verbal recall can be. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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There are a number of classes of variables that can encode charac-
teristics of text that can allow automated measurement of the quality of a
recall. One class of measures are considered surface features of language.
Such measures include counts of words, noun phrases, and words related
to cognitive and affective processes. A second class of measures looks at
structural features of language, which analyzes features of how the lan-
guage is put together (e.g., the manner of the language) and can include
parses of the syntactic structure and the probabilities that word pairs
would likely occur together in the English language (e.g., n-grams).
Finally, semantic features are classes of variables that assess the meaning
expressed in texts. These measures can include the choice of words as
they relate to a specific topic as well as encoding the underlying meaning
of words, sentences, or whole passages. Such measures often incorporate
more general knowledge of the world or a domain and are able to
measure meaning at a conceptual level rather than through counting
direct overlap (e.g., detecting the similarity in meaning between words
like “grocery store” vs. “market”). Small transformations in wording of
concepts (e.g., “a man”, “a gentleman”, “a guy”) can be counted as
equivalent concepts. However, changes in the amount of detail (e.g., “a
brown clock”, “a clock”) would be considered as having a different
number of concepts.

We derived a range of features from spoken story recall responses
(described below) that are automated, fair and objective. We have
applied NLP techniques to analyze the spoken responses to verbal recall
tasks to evaluate to what extent they can provide new ways of testing and
scoring this task, what additional information they provide regarding
how individuals perform the task, and whether such techniques offer
promise of being useful in ambulatory settings where frequent, remote
and self-administration of tasks is necessary [29,33].

5.4. Predicting clinically important variables from story recall features

Ten stories for memory recall were developed that were structurally
similar to the widely used traditional prose recall task in the Logical
Memory subtest of the Wechsler Memory Scale-III [21]. The stories were
between 61 and 82 words in length (average length¼ 72 words). Among
the ten, five were informational (e.g., how to bathe a guinea pig) and five
were narrative (e.g., a story about a lost balloon at a party). Each
narrative had two characters, a setting, an action that happened in the
setting causing a problem, and then a resolution. Each informational
passage presented a purposeful sequence of actions or an explanation of a
process to accomplish a goal. The participants were asked to verbally
recall the story immediately after hearing it as well as after a one day
delay of time, resulting in 750 recalls generated by the psychiatric patient
class (575 immediate and 175 delayed) and 427 recalls generated by the
non-patient class (216 immediate recalls and 211 delayed).

A set of computational methods were validated on a subset of the
data. We used a set of 193 recall responses that each had been inde-
pendently rated by seven judges on the quality of the content and the
theme of the recall on a six-point scale. Overall, the raters correlated with
each other at an average of r¼ 0.83 (ranging between 0.75 and 0.89).
This indicated that human raters were able to employ the scale reliably.
All responses were human-transcribed as well as automatically tran-
scribed using ASR. The ASR engine used was Google's Speech API (as
before, the human transcribers initially screened the recordings for
Personally Identifiable Information before sending them to Google's
Speech API). The ASR system generated a total WER of 20.90%. Two
transcribers were used for the human transcriptions, resulting in a human
transcriber WER of 7.2%.

For the story recall task, a ridge regression model was built to predict
human ratings on recall accuracy. Ridge regression models are especially
good at avoiding overfitting on a training set as the coefficients of input
features are regularized and thus result in better predictions on new,
unseen data. In a similar process to that employed in sections 5.1.2 and
5.1.3, we used 10-fold cross-validation to find the most suitable model
parameters for training and testing. The best regularization strength was
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found to be 0.01. The ridge regression model was built using the three
best language features that accounted for different aspects of speech that
human raters employ. These three features were the number of unique
words spoken in a recall (mean regression coefficient¼ 2.47), the num-
ber of common words between the original story and the recall (mean
regression coefficient¼ 3.14), and the word mover's distance of the
word2vec vectors of the original story and the recall (mean regression
coefficient¼�2.71 [34]). The regression model correlated with human
ratings with an average over the 10 test folds of r¼ 0.88. When ASR
transcriptions were used instead of human transcriptions, the average
correlation was r¼ 0.86.

Additionally, an ensemble classification model which comprised
three logistic regression classifiers (one for immediate recalls, one for
delayed recalls, and one for the change between immediate and delayed
recalls) was created in order to predict whether a participant was in the
psychiatric patient class (N¼ 105) or the non-patient class (N¼ 120).
Logistic regression models are commonly used to convert standard
regression problems to classification problems. Thus each individual
model contained in the ensemble returned a tuple of the probability that
the current participant belonged to each class. The model then generated
a weighted combination of each probability tuple, resulting in a final
class membership probability estimate. Leave-one-out cross-validation
was performed across data from individual participants, training on all
participants but one, and testing on the one left out. Using the same
features as the regression model, the ensemble classifier predicted with
an accuracy of 76% on human transcriptions and 74% on ASR tran-
scriptions. This is a significant result given the diversity in the patient
class as well as the fact that diagnoses are typically based on an entire
battery of tests and other contextual information.

Principal Component Analysis (PCA) was used to project the 8-dimen-
sional feature set used in the classification model to 1 dimension for
visualization purposes. PCA is a tool commonly used in exploratory data
analysis, as it allows for the visualization of high dimensional spaces.
Fig. 4 shows the distributions of the two classes' reduced data. The plots
show two clear distributions with some overlap in the middle. Specif-
ically, the non-patient class is more consistent in their verbal recall
performance, with a high peak and a lower spread. On the other hand, as
expected, psychiatric patients vary more in their performance, and tend
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to have lower scores. Two participants from the patient class were chosen
to showcase their performance in relation to the entire dataset. Partici-
pant 2 is in line with the distribution of the patient class, whereas
Participant 1 falls right in the peak of the non-patient class. From these
plots, we can also see how a participant's performance on a particular day
compares to populations as a whole and to their own prior sessions.
Unsurprisingly, the classifier correctly predicted Participant 2 as a pa-
tient and incorrectly predicted Participant 1 as a non-patient.

Overall, these results indicate that we can automatically derive a
range of semantic and surface level features from spoken recalls, and that
these features can be harnessed to accurately predict the ratings of expert
humans as well as provide accurate classifications of psychiatric patient
and non-patient participants. If we examine the results across the
different measures computed in this paper (see Table 1), we see a strong
pattern of machine learning-based approaches being successful at char-
acterizing performance across a range of tasks using speech and language
features.

6. Future directions

Finally, we discuss whether the carefully crafted features (e.g.,
arousal predictions, semantic similarity measurements, self-report scales)
can be configured into a functional system with multiple parameters to
monitor a psychiatric patient's clinical state with sufficient accuracy as to
be useful. One central benefit of the dMSE application is the ability to
consistently and reliably track patients' performances on a longitudinal
Fig. 5. Plots showing the mutual variation of performance on the immediate recall
which was one of the following: a) how happy the participant was (plots on left hand
the calculated probability that the participant was a non-patient participant on the gi
and change between the immediate and delayed recall.
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basis. We have previously demonstrated the complete pipeline of auto-
mating single components of assessment such that actionable inferences
about cognitive state may be taken [29,33].

However, in the same way that expert clinicians do not make such
critical decisions based upon one observation or type of data, so too is it
necessary for machines to emulate the process of using multiple data
channels, including the temporal aspect of data (i.e., time is a core
component in most diagnostic categories in psychiatry such as the
Diagnostic and Statistical Manual of Mental Disorders-5; [35,36]).
Indeed, as it is not beneficial to merely compare the performance of one
patient with others on a single task, the application allows for the
tracking and monitoring of the fluctuations of one patient's performance
on several tasks over time. This enables the necessary examination of
whether the multi-dimensional data are equally relevant, namely
whether various data types collected at a specific time point are similarly
valid, a process that requires complex weighting. This in turn allows
clinicians to have access to data streams to monitor the highs and lows of
mental state as a whole. Fig. 5 displays real results from 2 participants
(Participant A from the patient class and Participant B from the
non-patient class) who interacted with the dMSE application over a
period of 11 and 7 sessions, respectively. We see more consistency in the
performance of the non-patient and more fluctuations in the patient. The
fluctuations and correlations (or lack thereof) of performance on various
tasks can be subjected to machine learning so as to produce critical and
objective health summaries for clinicians that are displayed in an easy to
interpret dashboard-like format.
task over sessions (note: 1–6 rating scaled to 0–1), response to a slider question
side) and b) how concentrated the participant was (plots on right hand side), and
ven session, evaluated on their immediate recall content, delayed recall content,
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To date, this automated combination of multi-modal data streams
over time has yet to be addressed by the field. This proof of concept has
much promise, but whether this translates into medical gain is still an
open question, as discussed further in the next section.

7. Discussion

The present study has shown that automated machine learning ap-
proaches to neuropsychological assessment can be used for understand-
ing clinical judgment. Good quality data can be collected by a smart
device application that users self-administer. Our framework allows us to
address the three main issues previously raised: the number of clinicians
needed to monitor the vast amount of patients with mental disorders can
potentially be reduced, the ability to monitor patients frequently and
consistently, while taking into account an extensive amount of past data
is enabled, and the vast amount of data collected paired with knowledge
of life events allows for machine learning analysis of mental state both at
an individual level and at a general population level. Additionally, this
framework lays the groundwork for much needed increased equity in
mental health services as it can provide patients the assistance they need
regardless of any personal characteristics such as gender, age, ethnicity,
location, or socioeconomic status (see Ref. [25]). Clearly, full-scale ran-
domized clinical trials are needed to refine and validate these ap-
proaches. Such randomized control trials will further need to address the
legal and technical agile e-health frameworks needed for successful
development, deployment, and data analytic methods to be used for
remote monitoring.

A number of challenges remain to be solved in furthering this
approach (for issues related to tracking language in real time, see
Ref. [37]). Notably, any machine learning model will need exposure to
vast quantities of patient data in order to learn subtle trends and differ-
ences so as to be able to weigh the different data channels accordingly
based upon clinical condition and various baseline demographics (e.g.,
medical history, gender, age, and so on), and thus learn the nuances that
are both part of normal variance as well as those that are indicative or
predictive of significant clinical change. The machine learning methods
used are bounded by small datasets and the requirement that they must
be explainable. While advanced approaches such as long short term
memory networks or recurrent neural networks for temporal data hold
great prediction power in many fields, they cannot be harnessed with the
current limited datasets. Longitudinal analyses require hundreds of
measures in order to see change, not just a handful of snapshots over a
few weeks. Thus, more measurements (over both types and time) are
needed.

To collect the necessary quantities of data for machine learning ap-
proaches to be harnessed will require consortium efforts in order to
develop the clinical decision support systems. To achieve this, it remains
essential to establish how this vast quantity of data can be combined into
a meaningful whole, notably with other external measures. Much future
work is necessary to train machines to emulate the relative weightings of
the cognitive and emotional features expressed in individual patients and
present the findings in an understandable way to clinicians. Additionally,
these neuropsychological measurements must be contextual (i.e., incor-
porate information about a person's life on that day), and thus this new
approach to psychometrics will also require the collection of other
related context variables concurrently.

Indeed, our current work is focused on how to best combine metrics
from audio and semantic analyses, as well as data from other behavioral
streams, to predict clinically important variables. This is an extremely
difficult, but critically important, task. It is difficult because the clinical
end points themselves are not perfect (i.e., current gold standard labels as
evaluated by clinicians are imperfect and participants' self-reported states
are not necessarily related to the actual diagnosis and prognosis).
Nonetheless, we regard the approach illustrated above that enables the
calculation of the probability of illness to be in line with current medical
notions about the continuum of diagnostic entities. Furthermore, the
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incorporation of temporal data, such that the dynamic nature of cogni-
tion and mental state can be captured and analyzed, provides the much
needed framework for the empirical investigations necessary to deliver
the precision promises of personalized medicine [38]. The future goal of
a ‘telemental health’ monitoring tool needs to be supported by a ran-
domized clinical trial and implementation of a core e-health system that
tracks the clinical state of psychiatric outpatients and, when appropriate,
alerts clinical staff to contact that patient.

Finally, although many mental health centered mobile phone appli-
cations are downloaded and used by consumers, most have been found to
be quickly abandoned [23]. More studies are needed to ascertain which
qualities of applications retain the most users over time. With data sci-
ence we can find the useful measures and reduce the amount of testing
needed. Therefore in the future, the full suite of testing can be reduced
and a resulting mobile phone application can be shortened and thus more
tolerable to users.
8. Conclusion

In this study, we employed smart devices such that frequent and
remote monitoring was practically viable. We see this as a first step to-
wards individualized, longitudinal, illness specific, and contextually
based machine learning methods. We leveraged machine learning
methods for automated analysis and scoring, which is necessary with the
amount of information collected, and afforded the analysis of content and
pattern in speech, thus increasing both objectivity and sensitivity. Thus
far, most AI-based modeling of psychiatric cognitive biomarkers has
relied on small laboratory-based datasets. This approach provides a
pathway to collecting the size of data needed for truly generalizable AI
methods and to be able to better measure and understand population and
individual variability for better predictive models. It furthermore allows
for the examination of patient data in a very nuanced manner so as to
develop individualized personalized baselines to detect clinically mean-
ingful change. However, in order to define ‘meaningful’ it is necessary to
calibrate by developing models that weigh different behavioral streams
appropriately.

Given that the gold standard external measures in psychiatry are
flawed, it is difficult to establish exactly what the objective behavioral
metrics should be anchored to and thus how to calibrate change, but this
approach enables more nuanced design of new psychometrics and tests
(e.g., Refs. [39]). The present work provides a pathway to individualized
models and shows how they can be realized with a machine
learning-based approach by analyzing speech and language, as well as
self-reports. Our analyses show strong promise, but will require sub-
stantial and highly complex analysis and additional research to properly
understand this issue. For such automated methods to be used in medi-
cine, the methods must be explainable, transparent, and generalizable.
We argue that there is an urgency for the development of a framework
with which to evaluate such complex methodologies [25]. Importantly,
the knowledge, results, and tools developed from the current project
form the much needed foundation for the development of clinical deci-
sion support systems, which are a major part of future medical systems
that will afford the user (patient, clinicians, and family members) the
unprecedented opportunity to better manage and regulate mental health
based upon daily performance and health metrics.
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